optimal$55398$ - traduzione in greco
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

optimal$55398$ - traduzione in greco

CLASS OF MATHEMATICAL PROBLEMS CONCERNED WITH CHOOSING AN OPTIMAL TIME TO TAKE A PARTICULAR ACTION
Optimal Stopping; Optimal Stopping problem

optimal      
adj. άριστος
make the most of         
  • alt=
STUDY OF MATHEMATICAL ALGORITHMS FOR OPTIMIZATION PROBLEMS
Mathematical programming; Optimisation; Optimization theory; Cost functional; Optimal; Optimum; Searching the search space; Optimisation (mathematics); Optimization glossary; Numerical optimization; Mathematical optimisation; Optimizer; Optimation; Ordinal optimization; Energy function; Optimizing; Function optimization; Optimization algorithm; Optimal allocation; Optimization; Optimization (mathematics); Numerical optimisation; Optimally; Make the most out of; Make the most of; Numerical optimization problem; Computational optimization techniques; Mathematical optimization algorithms; Applications of mathematical optimization; Applications of optimization; Algorithms for optimization; Algorithms for solving optimization problems; Automated optimization; Interior solution (optimization); History of mathematical optimization; Algorithm's optimality; Optimization problems in economics; Optimization problems in electrical engineering; Optimization of electrical circuits; Optimization of electronic circuits; Optimization heuristic; Optimization (mathematical); Optimization in electrical engineering
κάνω από τα περισσότερα
maximum value         
  • Counterexample: The red dot shows a local minimum that is not a global minimum
  • The global maximum is the point at the top
  • [[Peano surface]], a counterexample to some criteria of local maxima of the 19th century
LARGEST AND SMALLEST VALUE TAKEN BY A FUNCTION IN A GIVEN RANGE
Relative extrema; Extreme value; Maximum; Minimum; Local minimum; Global minimum; Local maximum; Global maximum; Local minima; Local extremum; Extremum; Global optimum; Absolute extremum; Maximum point; Minimum point; Global extremum; Globally optimal; Minima and maxima; Maximize; Minima; Local extrema; Local maxima; Absolute extreme; Extreme record; Maximum (mathematics); Relative maximum; Relative Maxima; Maxima & minima; Min and max; Max and min; Minimum (mathematics); Miminum; Maximums and minimums; Strict maximum; Strict minimum; Global extrema; Global minimum point; Global maximum point; Extrema (mathematics); Extrema of a function; Maximum value; Maxima and minima
μέγιστη αξία

Definizione

Longitudinal Redundancy Check
<storage, communications> (LRC, Block Redundancy Check) An error checking method that generates a longitudinal parity byte from a specified string or block of bytes on a longitudinal track. The longitudinal parity byte is created by placing individual bytes of a string in a two-dimensional array and performing a Vertical Redundancy Check vertically and horizontally on the array, creating an extra byte. This is an improvement over the VRC because it will catch two errors in the individual characters of the string, beyond the odd errors. (2004-01-26)

Wikipedia

Optimal stopping

In mathematics, the theory of optimal stopping or early stopping is concerned with the problem of choosing a time to take a particular action, in order to maximise an expected reward or minimise an expected cost. Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance (related to the pricing of American options). A key example of an optimal stopping problem is the secretary problem. Optimal stopping problems can often be written in the form of a Bellman equation, and are therefore often solved using dynamic programming.